Cyclotomic valuation of q-Pochhammer symbols and q-integrality of basic hypergeometric series - Combinatoire, théorie des nombres
Article Dans Une Revue Acta Arithmetica Année : 2024

Cyclotomic valuation of q-Pochhammer symbols and q-integrality of basic hypergeometric series

Boris Adamczewski
Jason P. Bell
  • Fonction : Auteur
  • PersonId : 937811
Eric Delaygue

Résumé

We give a formula for the cyclotomic valuation of $q$-Pochhammer symbols in terms of (generalized) Dwork maps. We also obtain a criterion for the $q$-integrality of basic hypergeometric series in terms of certain step functions, which generalize Christol step functions. This provides suitable $q$-analogs of two results proved by Christol: a formula for the $p$-adic valuation of Pochhammer symbols and a criterion for the $N$-integrality of hypergeometric series.
Fichier principal
Vignette du fichier
q-Integrality_22septembre2022.pdf (504.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03783937 , version 1 (22-09-2022)

Identifiants

  • HAL Id : hal-03783937 , version 1

Citer

Boris Adamczewski, Jason P. Bell, Eric Delaygue, Frédéric Jouhet. Cyclotomic valuation of q-Pochhammer symbols and q-integrality of basic hypergeometric series. Acta Arithmetica, 2024. ⟨hal-03783937⟩
64 Consultations
111 Téléchargements

Partager

More