Manipulating midbrain dopamine neurons and reward-related behaviors with light-controllable nicotinic acetylcholine receptors - Neurophysiology and Behavior
Article Dans Une Revue eLife Année : 2018

Manipulating midbrain dopamine neurons and reward-related behaviors with light-controllable nicotinic acetylcholine receptors

Dirk Trauner

Résumé

Dopamine (DA) neurons of the ventral tegmental area (VTA) integrate cholinergic inputs to regulate key functions such as motivation and goal-directed behaviors. Yet the temporal dynamic range and mechanism of action of acetylcholine (ACh) on the modulation of VTA circuits and reward-related behaviors are not known. Here, we used a chemical-genetic approach for rapid and precise optical manipulation of nicotinic neurotransmission in VTA neurons in living mice. We provide direct evidence that the ACh tone fine-tunes the firing properties of VTA DA neurons through b2-containing (b2 *) nicotinic ACh receptors (nAChRs). Furthermore, locally photo-antagonizing these receptors in the VTA was sufficient to reversibly switch nicotine reinforcement on and off. By enabling control of nicotinic transmission in targeted brain circuits, this technology will help unravel the various physiological functions of nAChRs and may assist in the design of novel therapies relevant to neuropsychiatric disorders.
Fichier principal
Vignette du fichier
elife-37487-v1.pdf (8.73 Mo) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-01875646 , version 1 (17-09-2018)

Licence

Identifiants

Citer

Romain Durand-de Cuttoli, Sarah Mondoloni, Fabio Marti, Damien Lemoine, Claire Nguyen, et al.. Manipulating midbrain dopamine neurons and reward-related behaviors with light-controllable nicotinic acetylcholine receptors. eLife, 2018, 7, pp.e37487. ⟨10.7554/eLife.37487⟩. ⟨hal-01875646⟩
390 Consultations
131 Téléchargements

Altmetric

Partager

More